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Chapter 1: Introduction

1.1 Humans and Large Language Models

The last few years have seen an explosive growth of artificial intelligence (AI) used in
human-facing applications — that is, applications where people directly interface with an
AT model in a back-and-forth manner.

Large Language Models (LLMs) in particular were the single biggest driver of this
change, and the main antecedent for this is simply their ability to both understand and
generate text on par with a human. They can understand questions, orders, and even long,
detailed instructions with different requirements and conditionals, and respond accordingly.
The response are not just eloquent and realistic, but also informative, follows instructions,
and can solve varied basic programming and logical tasks.

The above is not perfect, of course. LLMs may fail to correctly follow an instruction.
They may generate text that is irrelevant, misleading, or factually incorrect. They may be
simply incapable of understanding certain topics or solving certain problems due to how
they function on a mechanical or algorithmic level.

This thesis is concerned with one specific facet of an LLM’s capabilities — its ability
to understand and generate Emotions in text. This is particularly important for Human-Al

collaboration as all human interactions are coloured by emotions. Emotions can provide



context for social interactions, predicate specific reactions or responses in an individual, and
in a Human-Human interaction be used to provoke a particular reaction in another person.
A system that can do the aforementioned could be considered the holy grail of affective
computing [1]. To that end, the broad, overarching questions asked: Can an LLM recognize
and interact with emotions in text in the same way a human would? If not, that means
there is a gap between how an LLM deals with emotions and how humans would. In that

case, can we do anything to reduce this gap?

1.2 Research Questions

While the two aforementioned questions are important and underlie this whole thesis, they
are also huge, broad-stroke questions that form the basis of entire sub-fields of affective
computing and language modeling research. Rather than tackle everything all at once, I

focus on two smaller research questions.

RQ1: To what extent can Large Language Models understand and recognize emotions in

human dialogue?

RQ2: What is the best way to express an emotion to a Large Language Model during

Human-AI collaboration?

First, RQ1 is important in the sense it establishes a baseline for LLMs’ capabilities.
LLMs are fundamentally models for understanding text — their ability to generate text

is a separate step that is preceded by how well it understand a textual input. Therefore,



before investigating generation or human-AI collaboration, I investigate how well can LLMs
recognize emotions in human dialogue. This is a very straightforward classification task.

I approached this from two angles. The first angle is the straightforward approach,
simply classifying a line of dialogue using an LLM. For the second, I dived deeper and
instead asked the LLM to analyze a given line (from a training dataset) and describe the
emotions expressed in detail. After that, I trained small language models using the descrip-
tions alongside the original training data. This experiment showed us whether or not the
description of the line aligned with the labeled emotion.

Chapter 3, describes the experimental process, results and discussion for RQ1 in
detail.

Once I noted that LLMs are capable of recognizing and describing detailed emotions
from text, I moved onto generating emotional text. It is well known that LLMs are excellent
at generating text [2,3], so instead of evaluating the quality of generated emotional text, I
focused on communication. That is, I investigated what are the best ways to communicate
an emotion to an LLM so that it generates an appropriate sentence.

Humans tend to communicate emotions in text in two ways: describing the emotion in
words (“I'm so angry!”) or using an emoji (“€)”). However, both words and emojis can be
ambiguous and the exact emotional tone of different words can be hard to measure [4]. To
resolve this problem, Mehrabian developed the Valence-Arousal-Dominance (VAD) scale,
which measures emotion on three numeric dimensions [5].

As all of these are valid methods for expressing emotions, I evaluated each of them



in turn through a user survey. I generated sentences using some keywords and an emotion
expressed as either English Words, VAD described in words (Lexical VAD), VAD given as
numbers (Numeric VAD), or Emojis. Then I asked participants to select the sentence that
best matched a given emotion.

Chapter 4, describes the experimental process, results and discussion for RQ2 in
detail.

Over the years a lot of work has been done using language models for emotion clas-
sification, sentiment analysis, and related problems. Before describing the experiments, in
Chapter 2, I first look at the history and background of language processing algorithms
and early language models in affective computing, in the lead up to modern LLMs. T also
discuss other similar works that study emotions in LLMs, and highlight the research gap

this thesis aims to cover.

1.3 Contributions

This thesis focuses on a small but important aspect of text understanding and controlled

text generation in LLMs. The contributions of this thesis are as follows. I show that -

1. Large Language Models are somewhat effective as emotion classifiers, achieving 76.9%
accuracy on on two emotion classification datasets: SemEval-2025 and GoEmotions.
They can classify both coarse emotions (5 classes), but not fine-grained emotions (28

classes).

2. LLMs can be used to describe the emotional content of a line of dialogue. This can



be used to extend training datasets and improve the capabilities of small language
models. On a dataset with coarse emotion labels, there was an average improvement

of 2.9%.

3. Using Words to describe an emotion in a prompt gives the best alignment between
human expectations and an LLM’s generated text. Lexical VAD is a close second,

while Numeric VAD and Emojis have bad alignment.

4. For generating the most realistic and clearly emotional sentence, Words and Lexical

VAD are the best options for expressing an emotion in a prompt.

The study covering RQ2 was partially supported by a 2024 UMBC COEIT Interdis-
ciplinary Proposal (CIP) Award. It has been published as a preprint at the time of this

thesis’ completion [6].



Chapter 2: Background

A lot of previous work has been done at the intersection of affective computing and language
modeling. Some early works in machine learning in fact involved analyzing speech and
language, which were relatively easy to process. This includes datasets like IEMOCAP [7]
and techniques like principal component analysis or support vector machines [8,9]. However,
as machine learning has grown, so has the breadth of available datasets, benchmarks and
methods for both understanding and generating emotion in language.

This chapter will discuss previous research that has been done on emotional text
recognition and generation, as well as define any literature gaps that this thesis aims to

cover.

2.1 Modeling Emotion in Language

A large number of datasets and benchmarks exist for modeling emotion in language. Fairy
Tales was one of the earliest datasets, featuring short stories annotated with emotions.
[10,11]. More recent datasets include EmotionLines, CBET, Empathetic Dialogues and
GoEmotions [12-15], all of which focus on human-human conversation records annotated
with emotions per line.

Early work in the area such as [16] and [17] simply used a keyword-based approach,

assigning an emotional component to certain words in a sentence, then classifying based off



those emotional features. While such methods are certainly valid even today — a modern
language model would assign an certain weight to a token-level feature, which is conceptually
the same thing, only self-supervised rather than handcrafted — they suffer from an inability
to handle context (such a model would be incapable of distinguishing between ’tears’ (of
happiness) versus ’tears’ (of sadness), for instance) and from the need to have every word
labeled. And of course, many words can be ambiguous or completely neutral.

With sequential neural networks, methods using Recurrent NN’s or Long Short Term
Memory (LSTM) networks became popular [18], to varying degrees of success on various
benchmarks [19-22]. This was also the case with more modern transformer-based models
like BERT [23] and it’s subsequents [24-27].

In the age of LLMs, emotion classification and understanding is arguably a solved
problem. [28] shows that state of the art LLMs are fully capable of responding in an emo-
tional or empathetic way, performing very well on evaluation metrics. However, they also
state that alignment is one potential avenue of future work. [29] show that LLMs can be
used for annotating emotion, essentially replacing human labelers, but their results still
have a significant margin of error. Additionally, [30] shows that humans and LLMs are not

always aligned and that there is a gap in emotional understanding.

2.2 Generating Emotions with Language Models

Emotional sentence generation has been widely studied as part of style-transfer or empa-

thetic dialogue generation problems. A lot of early work on emotional sentence generation,



prior to neural networks, relied on rule-based systems [31]. With neural networks, the typ-
ical approach became to condition the output on specific emotional words [32,33], and this
did not change even when scaling up to transformers like GPT-2 [34, 35]. [36,37] utilized
the VAD space, adding an emotional vector to the internal representation of the text. [38]
conditioned a variational autoencoder on Emojis instead.

Work on generating emotions with LLMs has also been done. A variety of methods
like chain-of-thought, retrieval-augmented generation, prompt tuning, etc. have all been
successfully used [39-44] have all been used to varying degrees of success. However, one
thing all of these approaches have in common is that they are all based on words.

So, while smaller language models have experimented with using VAD and Emojis,
research on using LLMs to generate emotion have not. This is one potential gap that I

partially hope to address.



Chapter 3: Recognizing Emotions

Recognizing emotions in text is not always an easy task. Even humans make mistakes all
the time. People often say the wrong thing and annoy or anger the person they are talking
to. Part of the reason for this is that we learn to recognize emotions in a multimodal manner
— a combination of speech, tone, body language, and many other small cues.

In language and text, most of those cues do not exist. The only way to recognize an
emotion is by looking at the words or phrasing to find contextual clues that can help detect
emotion. As described in Chapter 2.1, this comes with its own challenges.

In this study, I investigated how Large Language Models classify an emotion in a

sentence, and how well can they describe the emotion that’s being expressed in that sentence.

3.1 Datasets

This study was primarily done on two datasets: SemEval-2025’s Task 11’s Multi-Label
Emotion Detection dataset, hence called SemEval-11 [45], and the GoEmotions dataset [15].
The SemEval-11 dataset consisted of only 5 emotions: “anger”, “fear”, “sadness”,
“joy”, and “surprise”. These emotions are based off Ekman’s emotion classes and are widely
used in a majority of other emotion datasets.
The GoEmotions dataset consisted of 28 emotions, making it a more fine-grained clas-

sification task: “admiration”, “amusement”, “anger”, “annoyance”, “approval”, “caring”,
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“confusion”, “curiosity”, “desire”, “disappointment”, “disapproval”, “disgust”, “embarrass-

ment”, “excitement”, “fear”, “gratitude”, “grief”, “joy”, “love”, “nervousness”, “optimism”,

“pride”, “realization”, “relief”, “remorse”,“sadness”, “surprise”, and “neutral”.
To control the variable of dataset size, I used the full SemEval-11 training dataset,
consisting of 2768 data points for training and validation, and 116 data points for testing.

GoEmotions is a much larger dataset of 58k data points, from which I sampled 2768 and

116 data points randomly to use for training and validation, and testing respectively.

3.2  Experimental Design

Two experiments were carried out at this stage.

1. Classifying emotions using an LLM and Zero-Shot prompting.

2. Using an LLM to describe the emotion in the sentence, then fine-tuning a small

Language model for classification using the description as additional data.

For both experiments, Gemma-2-3B, hence referred to as Gemma-2 [46], is used as
the LLM of choice for several reasons. Firstly, a large number of evaluations and experi-
ments already exist with larger LLMs like GPT-4, LLaMA, and other competing models.
Comparatively, there are far fewer evaluations carried out on models with less than 4B
parameters.

Secondly, models smaller than Gemma-2, including LLaMA-3.2-1B, LLaMA-3.2-3B,

[47] and SmolLM-1.7B [48] failed to follow the instructions for both experiments.

10



3.2.1 C(lassification

Initially I intended to evaluate on Zero-Shot classification. However, all open-source LLMs
tested failed to return a consistent or coherent answer in the zero-shot setting.
In the few shot setting, they perform much better. I selected two arbitrary samples

from the training dataset as exemplars. The prompt is given below:

Classify the given sentence into one of the following emotions: [list

of emotions go here].

Name the emotion without any description or reasoning.

For Example:

Passage: "By far the coolest thing I've seen on this thread yet"
Emotion: "joy"
Passage: "You should dm her and say I'm sorry"

Emotion: "sadness"

Passage:{passage}

Emotion:

The [1list of emotions go here] was replaced by the emotions in the SemEval-11
and GoEmotions datasets respectively, with each emotion in words separated by commas,

at evaluation time.

11



The passage conveys a sense of
bewildered frustration, a feeling of
being out of touch with the
mainstream. The writer's tone is one of
mild skepticism, tinged with a hint of
disdain, suggesting that they find the

\ concept of streaming entertainment to
+ | be illogical and even slightly ridiculous.

“I will never understand why
streaming is entertaining.”

Classifier v

Model

“I will never understand why Classifier x
streaming is entertaining.” eutra

Model

Figure 3.1: Summary of Experiment 2 for Recognizing Emotions. The top and the bottom

results are compared across the full test dataset.

3.2.2  Describing Emotions

Figure 3.1 summarizes the overall process of Experiment 2.
Two approaches were used to compare the classifiers. The LLM was asked to describe

the emotion using the following zero shot prompt:

Write a long paragraph describing the unique emotional tone style of
the following passage without referring to specifics about the topic.
Do not include anything after that paragraph. Any explanations should

be in the same paragraph as the description.

12



Passage: {passage}

Description:

The descriptions were generated for both the training and validation sets, as well as
at evaluation time.

Four classifier models were tested: BERT [23], RoBERTa-Base, RoBERTa-Large [49],
and ModernBERT [50]. They were evaluated on the mean F1 score across all labels.

The models were all fine-tuned using a standard set of parameters. No hyperpa-
rameter optimization was carried out. The training:validation ratio was 90:10. They were

fine-tuned for 5 epochs, with a learning rate of 2 x 107°, and batch sizes of 4.

3.3 Results and Discussion

3.3.1 Classification Results

Table 3.1 shows the results of carrying out Few-Shot classification.

It appears that classifying SemEval-11 is a relatively straightforward task for both
models. GPT-4 achieves 0.769% accuracy, which is comparable to a smaller Language
model directly fine-tuned on this dataset (as shown in the following section, Section 3.3.2).
Gemma-2 is much worse, but still somewhat acceptable. However, on the GoEmotions
dataset, both models perform quite poorly.

One potential hypothesis is that the LLMs are not ’bounded’ to any strict labels.
So, in the SemEval dataset, when prompted to stick to a small selection of five emotional

labels, both models tended to respond with one of those labels. However, in the GoEmotions

13



Model SemEval-11 | GoEmotions

Baseline 0.200 0.036
GPT-4 0.769 0.071
Gemma-2 0.552 0.181

Table 3.1: Few-Shot Classification accuracy, computed as the rate of correct predictions

(direct accuracy). I compare against the baseline random-guess results here.

dataset, with 28 different labels, attention was likely unevenly distributed across the labels.
This may have caused many of the predictions to fall in the same ’group’, but not precisely
the same emotion. For instance, the LLMs may have been unable to distinguish between

“disappointment”, “disapproval”; “disgust” in the text as effectively.

3.3.2 Describing Emotions Results

Tables 3.2 and 3.3 shows the results of Experiment 2 on the two respective datasets.

The results are somewhat interesting and contradictory here. On SemEval-11, there
is a very clear improvement from using Descriptions as additional context, averaging a 2.9%
improvement across the models. RoBERTa-large performs the best in general, indicating
that this is a problem that is solved by a bigger model, but using descriptions allows
ModernBERT to reach almost same level of accuracy with fewer parameters.

However, there is no improvement to be seen on the GoEmotions dataset. This

actually follows on from the results of experiment 1: That LLMs are not able to distinguish
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Model No Description | With Description | Improvement
BERT-base-uncased 0.709 0.725 1.6%
RoBERTa-Base 0.678 0.716 3.8%
RoBERTa-Large 0.774 0.780 0.6%
ModernBERT 0.716 0.771 5.5%

Table 3.2: Test Results on SemEval-11 when using finetuned small LMs with and without

descriptions, as well as the percentage improvement from using descriptions.

Model No Description | With Description | Improvement
BERT-base-uncased 0.840 0.828 -1.2%
RoBERTa-Base 0.829 0.831 0.03%
RoBERTa-Large 0.815 0.825 1.0%
ModernBERT 0.838 0.827 -0.09%

Table 3.3: Test Results on GoEmotion when using finetuned small LMs with and without

descriptions, as well as the percentage improvement from using descriptions
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between all the emotions in the 28 classes, so the descriptions overlap across the different
emotions and potentially even make classification harder for smaller LMs. In future work,

it may be interesting to study exactly at which level of granularity do LLMs start failing.

To summarize:

e Both models perform very well at classifying five emotions in the SemEval-11 dataset,

but much worse at the twenty-eight emotions in the GoEmotions dataset.

o Using an LLM to generate descriptions follows on from the previous result. It improves

the ability of smaller models when there are only a few emotions, but is ineffectual

when there are many emotions to choose from.
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Chapter 4: Generating Emotions

What is the best way to express an emotion to a Large Language Model during Human-Al
collaboration? I investigated this from the perspective of alignment — that is, ensuring
that Humans and LLMs are on the same page in regards to both the emotion that is to be
expressed and how intense it should be.

To study alignment, I framed this problem as a keyword-based sentence generation
problem. Keyword-based, alternatively called lexically constrained, sentence generation
involves generating a sentence or text that contains a specific keyword or set of keywords.
This is useful for scenarios where an user wants to maintain a high level of control over
the generated sentence. Keyword-based sentence generation is especially useful for uses like
assistive technologies where users have limited motor control or simply do not have the time
to input full sentences [51,52]. It also has uses in human-robot interaction [53], advertising
and marketing [54], and so on.

I then added an additional constraint on top of the keyword-based generation: emo-
tion. There are now two constraints on the final output sentence, an emotional one and a
lexical one. While small language models exist for keyword-based sentence generation, us-
ing LLMs has some advantages for the aforementioned use cases. LLMs have higher quality
text generation, have a wide range of information recall and reasoning abilities, and their

outputs can be improved through techniques like retrieval-augmented generation. LLMs
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Figure 4.1: Representation Alignment study. Three keywords and an emotion from one
of the four representations are used to generate a sentence. Participants are shown the
emotion in only one of the representations and select the sentence they think best fits that

emotion.
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have also been shown to have near-perfect keyword-based generation abilities [55], almost
always using given keywords in the sentence.

To generate a sentence, an LLM must be given a prompt that describes what the
output should be like. The straightforward way to make the output ’emotional’ is to simply
mention the emotion in the prompt in words and say the output should express it. However,
as described in Chapter 1.2, ambiguity is a limiting factor.

Consider these two words for describing a very similar emotion: “angry” and “furious”.
"Angry’ can be seen in a couple different ways. Some people become loud and aggressive
when they are angry, while others have a ’'cold’ anger. This can vary across cultures and
across people who have different levels of english fluency. On the other hand, the term
"furious’ almost always refers to a more energetic outburst of anger. In cases like this, the
utility of the VAD scale is highlighted.

In the Valence-Arousal-Dominance scale [5], an emotion is mapped on three axes
described here:

Valence — How pleasant you feel. A low valence would mean you are feeling nega-
tive/unpleasant whereas high valence would mean you are feeling positive or pleasant.

Arousal — How engaged or alert you feel. Low arousal would mean that you are more
on the calmer or sleepier extreme, while high arousal would mean you are more active and
energetic.

Dominance — How much control you have over what you feel. Low dominance implies

no control and high dominance implies feeling very much in control of your emotion.
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These scales are a less subjective, more fine-grained way of describing emotions. They
are primarily used in psychology but have also seen some use in affective computing.

In this chapter, 1 describe the different emotional representations, the process of
generating emotional, keyword-based sentences using different representations of emotions,

the design of the user survey, and finally discuss the results of the participant study.

4.1 Representing Emotions

I choose four different emotion representations to compare:

e Words: English terms for the emotion,

o Lexical VAD: VAD scales expressed in English (Very High, High, Moderate, Low,

Very Low),

o Numeric VAD: VAD scales expressed in numeric terms (-5.0 to +5.0), and

e Emojis.

Words is self-explanatory. I choose a list of emotions and their most commonly used
english term based off [15]. The results seen in Chapter 3 clearly show that dealing with
28 emotions is too difficult for LLMs and might also be for humans, so I narrow it down
to 18 emotions, removing some emotions that were too difficult to distinguish in between.
The final list of emotions was: Grateful, Joyful, Content, Surprised, Excited, Impressed,
Proud, Anxious, Afraid, Terrified, Annoyed, Angry, Furious, Sad, Devastated, Ashamed,

Embarrassed, and Guilty.
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The goal was to cover all major ’groups’ of emotions, and to cover a range within each
group. For instance, Anxious, Afraid and Terrified are all similar emotions falling under
the ’Fear’ category, but in respective order are progressively more intense.

The VAD scale is typically a numeric scale where the values range from -1.00 to 1.00.
Russel and Mehrabian’s original work [5] only describes the VAD values for 7 emotions. [56]
extended this to cover a wider range of emotions that correspond to the 18 emotions I
selected. However, parsing decimal values like -0.46 or 0.03 is very unintuitive and may
have posed a major cognitive load for non-technical users during the user survey.

Therefore, the values were converted to two different scales that are easier to com-
prehend. First, they were normalized to a wider range of -5.0 to 4+5.0, then rounded to the
nearest 0.5. There was a loss of fine-grained information when converting to this discrete
numeric representation, but each emotion is still distinguishable, so it was acceptable. This
gives the Numeric VAD representation.

For Lexical VAD, instead of converting to a numeric value in the range of -5.0 to
+5.0, the values were segmented into five ranges. From the lowest to the highest value, all
values falling within each segment were mapped to the terms Very Low, Low, Moderate,
High, or Very High respectively.

Finally, Emojis were selected based on the closest interpretation to the emotion. In
some cases, the emoji was named after the emotion, which made it a simple choice. In other
cases, I went with the closest matching popularly used emojis. In the survey, Emojis were

embedded as unicode so that participants would see the set that they were used to seeing
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Group Words Emoji | Valence Arousal Dominance
Grateful S Very High (42.5) | Moderate (0.0) Low (-2.5)
Happy Joyful & | Very High (+4.0) | High (+1.0) High (+1.0)
Content < Very High (+4.0) | Moderate (0.0) Very High (+4.0)
Surprised & High (+1.0) Very High (+2.5) | Low (-2.5)
Surprise
Excited L Very High (42.5) | Very High (+4.0) | High (+1.0)
Impressed & High (+1.0) High (+1.0) Very Low (-4.0)
Pride
Proud L) Very High (+4.0) | High (+1.0) Very High (42.5)
Anxious &b Low (-1.0) High (+2.5) Low (-2.5)
Fear Afraid e Very Low (-5.0) | High (42.5) Very Low (-4.0)
Terrified o8 Very Low (-5.0) | Very High (44.0) | Very Low (-4.0)
Annoyed x Low (-2.5) Moderate (0.0) Moderate (-1.0)
Anger Angry Go Very Low (-5.0) | High (2.5) Moderate (0.0)
Furious @ | Very Low (-4.0) | Very High (4.0) | High (1.0)
Sad = Very Low (-4.0) | Low (-2.5) Very Low (-4.0)
Sadness
Devastated = Very Low (-4.0) | High (1.0) Low (-2.5)
Ashamed & Low (-3.0) Moderate (-1.0) | Very Low (-4.0)
Shame | Embarrassed R Very Low (-4.0) | High (2.5) Low (-2.5)
Guilty Very Low (-4.0) | Moderate (0.0) Very Low (-4.0)

Table 4.1: All 18 Emotions used in the Study and their Representations.
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on their device.

Table 4.1 shows the full list of emotions used, including the category, the correspond-
ing emoji, and the lexical and numeric VAD values. The category of the emotions were
used when selecting which emotions to use but were not integrated into the generation nor

shown to participants.

4.2 Sentence Generation

Two different LLMs were used for generating sentences: GPT-4-Turbo 2024-04-09 [3] and
LLaMA-3-70B [47], referred to as GPT-4 and LLaMA-3 from here on respectively. The
proprietary GPT-4 model was used through OpenAI’s API, while the open-source LLaMA-
3 model was fetched from [57] and run locally, but had to be quantized to 8-bit integer
weights [58] in order to fit on the available hardware.

Other models considered at this stage included LLaMA-3-8B, LLaMA-3.1-8B, Gemma-
2-9B, and Gemma-2-27B. Out of all the models tested, LLaMA-3-70B had the best output
even after quantization.

I limited each input to just three content keywords. This struck a balance between
giving LLMs sufficient context without almost writing a short sentence. The keywords were
sets of arbitrarily-chosen, common everyday words like [Place, Great, Korean|, [Finals,
Semester, Math)].

For each of the four emotion representations, 90 sentences were generated — five sets

of keywords for all 18 emotions, for a total of 360 sentences per model.
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For generating a sentence with emotions represented as Words or Emojis, I used plain
few-shot prompting [59]. The exemplars were selected randomly, but included at least one
positive emotion and one negative emotion. The keywords and sentence in the exemplars
were the same, with the emotion simply being written in either English or as an emoji.

For prompting using either form of VAD, I used step-back chain-of-thought prompting
[?]. First, I prompted the model to give an explanation of VAD, then convert it to scale from
-5.0 to +5.0 if using Numeric VAD. Once it has a description of VAD as well as a numeric
mapping, I use a prompt similar to the few-shot prompt used for Words and Emojis, once
again replacing the emotion with either Lexical or Numeric VAD.

The prompts are given in full in Appendix A.

4.3  User Study Design

The user study was evaluated and approved by the UMBC IRB under Protocol 1380: "Eval-
uation of Language Generation Technologies”.

For the user study, each participant was randomly assigned an emotion representation
(one of Words, Lexical VAD, Numeric VAD or Emoji). They were then asked to answer 15

questions in total. There were two types of questions: alignment and realism.

4.3.1 Participants

A total of 200 participants were recruited using the crowdsourcing platform Prolific — 100
participants for each LLM being evaluated. The participants were paid at a rate of $14/hr.

The average response time of the survey was approximately 15 minutes, so each participant
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was paid $3.50. Each participant was only allowed to complete the survey once.
Participants were required to be 18+, fluent in English, and residing in the United
States. Participants were shown a consent form at the start of the survey, and at the end
of the survey they were asked to answer a bonus Question, which was used as a filter to
gauge how much attention users gave to the survey. Users answered this question with poor
English, or gave an irrelevant answer were excluded from the final study results. Users who
completed the survey abnormally quickly (in 2-3 minutes or less) were also excluded.
Participants were instructed on how to parse the emotions and what to consider for

the response. The exact instructions are given in Appendix B.

4.3.2 Alignment Questions

The alignment questions focus on the alignment between an user and an LLM. Here, I gave
the user an emotion in the form of their assigned representation, followed by four sentences.
These four sentences were generated by an LLM using a different representation each. The

user was asked to select the one that best matched the given emotion. For instance:

Q1. Anxious

1. I feel so nervous about my math finals this semester.

2. I can’t believe the semester is almost over, and we’ve got that big math

final coming up soon; it’s really time to buckle down and study hard!
3. I'm really stressed about the math finals this semester.
4. 'm so happy I passed my math finals this semester!
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In this case, choice 1 was generated by prompting the LLM with Words. Choice 2
was generated by prompting the LLM with Lexical VAD. Choice 3 was with Numeric VAD,
and Choice 4 was with emojis. The display order to the user was randomized.

Each user was given 10 questions of this type. One thing to note at this time was
the cognitive load on the participants as well as the time spent taking the survey. While
participants who got Words or Emoji representations could understand the emotion easily,
it was much harder for users in VAD representations to understand the emotion, as very few
normal people are familiar with the system. 10 was a good compromise between having a

large number of answers and having responders who were focused through the entire survey.

4.3.3 Realism Questions

Following the alignment question, participants were asked to answer 5 questions relating to
the 'realism’ of the generated sentences. In this case, realism simply describes how accurate
a generated sentence is when it comes to expressing an emotion, as well as how natural it
sounds.

Participants were asked to answer three 5-point Likert scale questions [60]. Partici-
pants were asked to rate the questions on a 5-point Likert (Not at all, Slightly, Moderately,
Very, Extremely), where 1 corresponded to Not at all and 5 corresponded to Extremely.

The example below shows the questions asked:

For the following questions, consider the emotion represented by these VAD

values: Very High Valence, Moderate Arousal, Low Dominance
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And this sentence: “This place has great Korean food; it always makes

me so happy!”

How much does the sentence...
- Convey the emotion above?
- Sound like something that you would say?

- Sound like something that someone else would say?

From this point onwards, these questions will be referred to as “Convey”, “You’d
say”, and “Someone Else’d say”, respectively.

The “Convey” question allows us to directly assess whether the sentence generated
by the LLM accurately expresses the emotion. The “You’d say” and “Someone Else’d say”

questions allow us to see if the sentence is actually realistic and human-sounding.

4.4 Results and Discussion

After removing any invalid responses, there were 26, 25, 28 and 29 participants for Words,
Lexical VAD, Numeric VAD and Emojis respectively for GPT-4, and 25 participants ex-
actly for each of the four conditions for LLaMA-3. Due to this difference, the counts were

normalized during evaluation and discussion.

4.4.1 Representation Alignment

Representation Alignment as defined as a combination of two factors:

1. If the participant was more likely to select the sentence that was generated using the
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same representation they were given (match rate)

2. The average Shannon Entropy for sentences using that representation was lower than

for other representations— representing better agreement across participants (en-

tropy)

A high match rate and a low entropy would indicate good alignment, and vice versa
means bad alignment. For example, if participants who were shown Lexical VAD emotions
were more likely to select sentences generated using Lexical VAD (despite not knowing how
the sentence was generated), AND the entropy for Lexical VAD was relatively low, then
Lexical VAD would have good Representation Alignment. A random match rate would be
25.0%, so any value above this would be notable. Table 4.2 shows the entropies and Figure
4.2 shows the match rates of both GPT-4 and LLaMA-3. Each category on the x-axis
corresponds to the condition the participant was in — what representation they saw. The
colors delineate what emotion representation was used for sentence generation. Results for
GPT-4-generated sentences are on the top, LLaMA-3 on the bottom.

Shannon Entropy was selected over inter-rater agreement measures like Krippendorft’s
Alpha because it expresses the gap between different representations better. Due to the large
number of questions (90) and small number of raters per question (7), inter-rater agreement
was very close to random across all four representations.

Overall, most participants agreed that the Words representation was the best fit when
they were presented the emotion in Words. This was an expected result, as humans express

emotions in Words most often—even more so than emojis, which can be subjective and
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Entropyl

Representation | GPT-4 | LLaMA-3
Words .32 .42
Lexical VAD .61 .72
Numeric VAD .70 .63
Emojis .67 .02

Table 4.2: Shannon Entropy values. Bolded values show the most agreement, underlined

are second most.

ambiguous [61]—and LLMs are also trained on natural language data. Words had a 61.9%
match rate using GPT-4 and 57.5% using LLaMA-3, as well as entropy values of 0.32 and
0.42 respectively.

Surprisingly, Lexical VAD also has a high match rate of 52.0% with GPT-4 and
a lower but still notable 31.2% with LLaMA-3. The entropy values were 0.61 and 0.72
respectively. While the agreement is worse than that of Words, the high match rate is
noteworthy. This occurs even though even though the participants and the LLMs are given
different instructions (Appendix B) and prompts (Appendix A). This indicates both humans
and LLMs may be drawing on similar ideas or memorized information when considering the
emotion.

Numeric VAD had poor alignment. One possibility is that participants struggled to

conceptualize the numbers, but were able to understand them more easily when expressed
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in quantitative words (leading to Lexical VAD doing better). Numeric VAD has been used
in other works to control the output of generative models [62,63], so this result indicates
that they may not be as good an idea for LLMs.

Finally, Emojis, despite being widely used, did not show particularly good alignment.
While it has good entropy scores, the match rate only barely exceeds 25.0% with GPT-4
only, at 29.7%. In fact, when participants were shown Emojis, they tended to select the
response generated by Lexical VAD regardless of the model.

While the trend is small, it was interesting as it happened across the models. One
potential explanation is that Lexical VAD for LLMs and Emojis for humans capture the
same amount of information for imprecise emotions. In other words, Lexical VAD breaks
down emotions into components that LLMs can work with while Emojis are discrete symbols
to text-based models, and humans can break Emojis down into individual facial features
but have a harder time understanding VAD scales due to a higher cognitive load.

Figure 4.3 shows the entropy values broken down on a per-emotion basis. For individ-
ual emotions per representation, the results are fairly similar, with most values between 0.70
to 0.95 meaning poor agreement, with some outliers. For GPT-4 using Words, the emotions
“grateful”, “anxious”, “embarrassed”, and “guilty” had perfect agreement, contributing to
the representation’s overall low entropy. The emotion “guilty” had perfect average entropy

for both LLaMA-3 and GPT-4.

To summarize:

e Words shows the highest alignment through match rate and mean entropy. Lexical
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VAD is a close second in terms of match rate.

e There is no clear trend in the alignment on a per-emotion basis, regardless of the LLM

used.

4.4.2 Realism

The average Likert scores for these three questions across conditions and for both models
are shown in Figure 4.4.

To analyze the significances of these results, an ANOVA statistical significance test
was run on the Likert ratings for all three Realism questions for both models.

The ANOVA showed that, for GPT-4, the emotion representation had a statistically
significant effect on the rating for “Convey” and “I'd say”, both p < .01. For LLaMA-
3, ANOVA showed the emotion representation had a statistically significant effect on the
rating for “Convey” and “Someone Else’d Say”, both p < .05.

When a pairwise t-test was run on the statistically significant results, Words was
found to be significantly better at conveying the emotion than Numeric VAD for GPT-4
(p = 0.002), while Lexical VAD was significantly better at “Convey” than Numeric VAD for
LLaMA-3 (p = 0.018). These results further show that Numeric VAD scores underperform.

For “You'd say” questions, Words is significantly better than both Emojis (p = 0.005)
and Numeric VAD (p = 0.044) when using GPT-4 to generate plausible-sounding sentences.
This shows that Words would most likely be the preferred representation for accurate emo-

tional expression.
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values are better. The top map shows results for GPT-4, while the bottom map is LLaMA-3.

Additionally, compared to GPT-4 LLaMA-3’s generated sentences are considered
slightly worse for conveying the emotion and sounding realistic across the board.

The mean scores for the “Convey” question are broken down by emotion in Figure
4.5. The scores are relatively high across the board, with some outliers. For instance, such
as Words with GPT-4 seemingly struggling with sounding “excited” or “proud” in a realistic
way, while Numeric VAD struggles with a lot more emotions like “anxious” and “angry”.
LLaMA-3, on the other hand, finds it very hard to sound “surprised” or “excited” when the
emotion is described as a word, but not when either form of VAD is used.

This leads to another finding: that despite guardrails to make LLMs more amicable
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and positive [64-66], they can still struggle to generate certain positive emotions under
complex conditions.

To summarize:

e Words and Lexical VAD appear to be the best representations for generating realistic

sentences across the board.

o Different emotions are expressed best by using different representations, but Words

and Lexical VAD are slightly better on average once again.
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Chapter 5: Conclusion

LLMs are increasingly being used to generate essays and stories, parse and respond to
emails, and to help humans communicate with each other. However, if LLMs are to be used
as an intermediary between humans and in Human-Al collaboration, then they must be
able to understand all aspects of human communication — including the emotional aspect.
They must be able to understand an emotion as it is communicated to them, and generate
an appropriate emotion as directed by a human.

In this thesis, I looked at two facets of the emotional understanding and expressivity
of Large Language Models. First, their ability to understand emotions, evaluated through
an emotion classification tasks on two datasets. Both these datasets consists of short lines
of text in the form of an interpersonal conversation and are labeled with up to 28 different
emotions. Next, their ability to generate emotions, evaluated through an human user study
of a keyword-based sentence generation experiment.

In Chapter 3, the study on emotion classification indicates that LLMs are quite good
at both simply recognizing and labeling the emotion, as well as describing it in detail and
justifying the answer of a classification result — as long as there’s a limited number of
emotions. Once there are too many emotions, LLMs become ineffectual. We also showed
that using an LLM to generate descriptions of emotions led to better accuracy in small

language models, but once again only when there were a few emotions.
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Following up, in Chapter 4, I studied how LLMs respond to different ways of rep-
resenting emotions. For this study, four representations were used: Words, Lexical VAD,
Numeric VAD, and Emojis. People typically expect Words and Emojis to perform the best,
as they are the most prevalent in human interaction and so would be prevalent in the train-
ing data of LLMs. However, it turns out that Lexical VAD performs very well, close to that
of Words and much better than Emojis.

Overall, this thesis shows that LLMs are capable of recognizing emotions in the same
way a human might, as well as generating them, and this bodes well for their use in Human-
AT collaboration. However, LLMs can struggle to recognize very fine grained emotions as
they are described in words. One way to overcome this is to use alternative scales like VAD
where emotions are less subjective. Thus, during generation, it is best to use either English
words or Valence-Arousal-Dominance values given in words to describe the emotion to the

LLM.

5.1 Limitations

There are some limitations to the work described in this thesis. Firstly, the results may
not generalize perfectly to every single LLM, as I tested a relatively narrow range of LLMs
throughout the two main studies. For recognizing emotions, the results may be worse on
other datasets, or using other LLMs. However, as a very small LLM was used to generate
descriptions, I expect other LLMs to actually perform better.

Another factor is that LLM training data is not well known, and it is possible that
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the models may have already been trained on the data they were tested on. This type of
train-test leakage is a major issue with LLMs in general.

In the second study, the keyword based prompt framing may have affected the results,
as well as the use of a quantized model. Additionally, due to funding limitations I only
investigated two models; carrying out further user studies on other models may lead to a
more robust conclusion. Another limitation is that the participants were all English speakers
in the United States, and people from other countries or cultures may have responded

differently.

5.2  Future Work

I showed that using LLMs can be used to enhance the training data of smaller language
models. This is worth exploring in other tasks as well that are limited by a lack of training
data beyond emotion classification.

Researchers and developers using LLMs for downstream controlled text generation
tasks should consider using Lexical VAD if they need a greater degree of control and less
ambiguity than english Words.

Finally it may be prudent to actively research how to improve both classification and
controlled generation using VAD. This could be done in many ways — including texts where
lexical VAD is used to describe emotions in the pretraining data, or in the post-training

stage such as by instruction-tuning the LLMs on lexical VAD data.
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Appendix A: Prompt Engineering

Listing all the prompts used in Chapter 4.

The system prompt was:

"You are engaging in a conversation with a human. Respond to the following
line of dialogue based on the given emotion and the following keywords.
Just add connective words and do not add any new information to the

output sentence. Do not use the word 'emotion' in the response and

express the sentiment in a different way.

The last line is only for when prompting with Words. We explicitly forbid it from

treating the Emotion as a keyword.

Al

Words

Here are some examples:

Emotion: Proud
Keywords: 'running', 'marathon', 'first'

Dialogue: Running my first marathon felt like such a huge accomplishment!
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A2

Emotion: Sad
Keywords: 'banana', 'plant', 'brown'

Dialogue: It really sucks that my banana plant's leaf is turning brown

Now, respond to the following. Remember, do not use the word {emo_}

in the dialogue:

Emotion: {emo_}
Keywords: {kwds_}

Dialogue:

Lexical VAD

Valence refers to the intrinsic attractiveness or averseness of an

event, object, or situation. In the context of emotions in text, valence
represents the positivity or negativity of the emotion expressed. For
example, words like "happy," "joyful," or "excited" have positive valence,

whereas words like "sad," "angry," or "frustrated" have negative valence.

It essentially measures the degree of pleasantness or unpleasantness

of the emotion.
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Arousal indicates the level of alertness, excitement, or energy associated
with an emotion. It ranges from high arousal (e.g., excitement, anger)

to low arousal (e.g., calm, boredom). In text, high-arousal words might
include "thrilled," "furious," or "ecstatic," while low-arousal words

could be "relaxed," "content," or "lethargic."

This dimension measures how stimulating or soothing the emotional state

is.

Dominance reflects the degree of control, influence, or power that

one feels in a particular emotional state. High dominance implies feelings

of control and empowerment, while low dominance suggests feelings of
submissiveness or lack of control. In text, emotions like "confident,"
"powerful," or "authoritative" would have high dominance, whereas "helpless,"

"weak," or "submissive" would have low dominance.

It gauges the extent to which an individual feels in control or overpowered

by the emotion.

Now, assume you are a normal human. Say a line of natural dialogue

based on the given keywords. Just add connective words and do not add
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any new information to the output sentence.

For example:

Emotion: Very High Valence, High Arousal, Very High Dominance
Keywords: 'running', 'marathon', 'first'

Dialogue: Running my first marathon felt like such a huge accomplishment!

Emotion: Very Low Valence, Low Arousal, Low Dominance
Keywords: 'banana', 'plant', 'brown'

Dialogue: It really sucks that my banana plant is turning brown

Emotion: Very High Valence, Very High Arousal, High Dominance
Keywords: "visit", "parents", "month"

Dialogue: I'm finally going to visit my parents next month!

Now, respond to the following:
Emotion: {v_3}, {a_}, and {d_}.
Keywords: {kwds_}

Dialogue:

43



A.3 Numeric VAD

Valence refers to the intrinsic attractiveness or averseness of an

event, object, or situation. In the context of emotions in text, valence
represents the positivity or negativity of the emotion expressed. For
example, words like "happy," "joyful," or "excited" have positive valence,

whereas words like "sad," "angry," or "frustrated" have negative valence.

It essentially measures the degree of pleasantness or unpleasantness

of the emotion.

Arousal indicates the level of alertness, excitement, or energy associated
with an emotion. It ranges from high arousal (e.g., excitement, anger)

to low arousal (e.g., calm, boredom). In text, high-arousal words might
include "thrilled," "furious," or "ecstatic," while low-arousal words

could be "relaxed," "content," or "lethargic."

This dimension measures how stimulating or soothing the emotional state

is.

Dominance reflects the degree of control, influence, or power that
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one feels in a particular emotional state. High dominance implies feelings

of control and empowerment, while low dominance suggests feelings of
submissiveness or lack of control. In text, emotions like "confident,"
"powerful," or "authoritative" would have high dominance, whereas "helpless,"

"weak," or "submissive" would have low dominance.

It gauges the extent to which an individual feels in control or overpowered

by the emotion.

Here's how each dimension can be defined on a scale from -5.0 to 5.0:

Valence:

-5.0: Extremely negative (e.g., intense sadness, extreme anger)

-2.5: Moderately negative (e.g., mild annoyance, slight disappointment)
0.0: Neutral (e.g., indifferent, no strong emotional reaction)

2.5: Moderately positive (e.g., mild pleasure, slight happiness)

5.0: Extremely positive (e.g., intense joy, deep love)

Arousal:
-5.0: Extremely low arousal (e.g., deep sleep, total relaxation)

-2.5: Moderately low arousal (e.g., relaxed, slightly tired)
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0.0: Neutral arousal (e.g., alert but not excited, calm)
2.5: Moderately high arousal (e.g., interested, mildly excited)

5.0: Extremely high arousal (e.g., highly excited, very agitated)

Dominance: -5.0: Extremely low dominance (e.g., feeling completely
powerless, totally submissive)

-2.5: Moderately low dominance (e.g., somewhat submissive, slightly
dominated)

0.0: Neutral dominance (e.g., feeling neither in control nor dominated)
2.5: Moderately high dominance (e.g., feeling somewhat in control,
slightly assertive)

5.0: Extremely high dominance (e.g., feeling very powerful, completely

in control)

These scales provide a way to quantify and compare the emotional dimensions

in a structured manner.

Now, assume you are a normal human. Say a line of natural dialogue
based on the given keywords. Just add connective words and do not add

any new information to the output sentence.
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For example:

Emotion: Valence: 4.0, Arousal: 1.0, Dominance: 2.5
Keywords: 'running', 'marathon', 'first'

Dialogue: Running my first marathon felt like such a huge accomplishment!

Emotion: Valence: -4.0, Arousal: -2.5, Dominance: -4.0
Keywords: 'banana', 'plant', 'brown'

Dialogue: It really sucks that my banana plant is turning brown

Emotion: Valence: 2.5, Arousal: 4.0, Dominance: 1.0
Keywords: "visit", "parents", "month"

Dialogue: I'm finally going to visit my parents next month!

Now, respond to the following:
Emotion: {v_}, {a_}, and {d_}.
Keywords: {kwds_}

Dialogue:
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A4 Emojis

You are engaging in a conversation with a human. Respond to the following

line of dialogue based on the given emotion and the following keywords.

Just add connective words and do not add any new information to the
output sentence. The response should be exactly one line with nothing

else other than the responding dialogue.

For example:

Emotion: &
Keywords: 'running', 'marathon', 'first'

Dialogue: Running my first marathon felt like such a huge accomplishment!

Emotion: =
Keywords: 'banana', 'plant', 'brown'

Dialogue: It really sucks that my banana plant is turning brown

Emotion: &

Keywords: "visit", "parents", "month"
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Dialogue: I'm finally going to visit my parents next month!

Now, respond to the following:
Emotion: {emo_}
Keywords: {kwds_}

Dialogue:
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Appendix B: Survey Questions

In this section, all the instructions given in the survey are listed.
[Any text appearing within brackets like this in the following section is a note and

did not appear in the survey.]

B.1 VAD Training

As participants were very likely to be completely unfamiliar with the VAD model,
a short training session was included in the survey that explained how the VAD model

(whether Lexical or Numeric) works.

B.1.1 Lexical VAD

For this study we will be using a popular model used for quantifying emotion called the
Valence-Arousal-Dominance (VAD) model.
1. Valence — How pleasant you feel. A low valence would mean you are feeling
negative/unpleasant whereas high valence would mean you are feeling positive or pleasant.
2. Arousal — How engaged or alert you feel. Low arousal would mean that you are
more on the calmer or sleepier extreme, while high arousal would mean you are more active
and energetic.

3. Dominance — How much control you have over what you feel. Low dominance
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Figure B.1: Lexical VAD Visualization

implies no control and High dominance implies feeling very much in control of your emotion.

Please take a moment to study figure B.1, as it might be helpful for visualizing the
above. It shows some common emotions we usually feel and how they map to the VAD
model.

For example, consider the difference between Angry and Furious. Both of these would
have low valence and moderate-to-high dominance. Being Angry has high arousal as it takes
a lot of energy to feel so. Being Furious would take even more energy, as you might feel like
you’re about to burst. So, Angry would have High Arousal while Furious would have Very
High Arousal.

Similarly, consider the difference between feeling Grateful and Joyous. Both of them

are positive emotions. Grateful should have High Valence, as you are feeling pleased but
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not over the top, while Joyous will have Very High valence as you are really happy and
elated.
Before you begin, you will go through a series of questions designed to help you

understand the VAD model of emotion, followed by a practice question.

[We include a sample of the questions here:]

What is the emotion that corresponds to VAD values High Valence, Very High

Arousal and Moderate Dominance?
Surprise

Joy

Anger

Correct Answer: Surprise.

High Valence indicates this is more of a positive emotion. Very High Arousal
means there is a lot of energy behind this, while Moderate Dominance shows
that you are not entirely in control. This could be either Joy or Surprise, but

having higher arousal and lower dominance suggests Surprise is the answer.
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B.1.2 Numeric VAD

For this study we will be using a popular model used for quantifying emotion called
the Valence-Arousal-Dominance (VAD) model. In this model, the X, Y, and Z axes span
only from -5 to 5 and can be defined as follows

1. Valence — How pleasant you feel on a range from -5 to 5. Here, -5 would mean you
are feeling very negative/unpleasant whereas a 5 would mean you are feeling very positive
or pleasant.

2. Arousal — How engaged or alert you feel on a range from -5 to 5. -5 would mean
that you are more on the calmer or sleepier extreme while 5 would mean you are more active
and energetic.

3. Dominance — How much control you have over what you feel on a range from -5
to 5. In this case, -5 implies no control and 5 implies feeling very much in control of your
emotion.

Please view the figure B.2 for a visual representation of these ranges.

Before you begin, you will go through a series of questions designed to help you
understand the VAD model of emotion. In the first set of questions you will be provided
the numerical values and need to choose the discrete emotion those VAD values correspond
to. Then you will be given a practice question similar to the rest of the questions in the

survey.
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Figure B.2: Numeric VAD Visualization

[We include a sample of the questions here:]

What is the discrete emotion that corresponds to VAD values -2.5 (Valence),

2.5 (Arousal), and 2.0 (Dominance)?

Sadness
Anger

Fear

Anger is the correct answer!

-2.5 Valence indicates this is a negative or unpleasant emotion. 2.5 arousal
means it takes a lot of energy to feel this way. Therefore, it cannot be Sadness.

2.0 Dominance means you are somewhat in control of how you feel, so it is
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unlikely to be Fear either. So, Anger is the most appropriate option.

B.2 Survey Questions

The following sections shows the consent form as well as the basic instructions for the
main survey questions sections.

Informed Consent Information

Informed consent: You must be 18 years or older to participate in this study.

The purpose of this study is to see if large language models like ChatGPT
describe emotions in the same way that people do. You are being asked to

volunteer because you are a native English speaker.

You will be shown a series of 4 different sentences and need to determine if each
sentence conveys a certain emotion. Note that the emotion may be displayed
in an abstract way. You will be taught how to read this abstraction before

answering the questions.
The survey may take about 15 minutes to complete.

You are welcome to withdraw or discontinue participation at anytime, but due to
the volume of participants expected from crowdsourcing, we will not be paying
participants for incomplete surveys. If you withdraw from the study or do not

complete the survey, your data will be deleted.

Please take your time and do the best you can. There are no right or wrong
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answers, but we reserve the right to not pay if we determine that you are not

following directions or taking the task seriously.

All data obtained will be anonymous. There is no way for us to find out who
you are, and your data will not be shared with any other parties under any

circumstance.

Any information learned and collected from this study in which you might be
identified will remain confidential. The investigator will attempt to keep your
personal information confidential. To help protect your confidentiality, your
data will only be linked to a randomly-assigned ID. Any information required to
pay you (i.e., username) will be kept in a spreadsheet on a secure server separate

from the other data you provide.

Only the investigator and members of the research team will have access to these
records. If information learned from this study is published, you will not be iden-
tified by name and all results will be reported in aggregate. By signing this form,
however, you allow the research study investigator to make your records avail-
able to the University of Maryland, Baltimore County’s Institutional Review

Board (IRB) and regulatory agencies as required to do so by law.

Introduction to the questions

In the following survey, you will be asked questions based on understanding and
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recognizing emotions in text. Following the practice questions, there will be 16

questions in total.

The emotions will be described as a word.

For example: Angry, Happy, Annoyed

In the following survey, you will be asked questions based on understanding and
recognizing emotions in text. Following the practice questions, there will be 16

survey questions in total.

The emotions will be described in terms of valence, arousal and dominance. For

example: High Valence, High Arousal, Low Dominance.

In the next page, we will explain what these terms are and how they relate to

emotions. (B.1)

In the following survey, you will be asked questions based on understanding and
recognizing emotions in text. Following the practice questions, there will be 16

survey questions in total.

The emotions will be described in terms of valence, arousal and dominance. For

example: Valence: -2.0, Arousal: 3.0, Dominance: 4.0.

In the next page, we will explain what these terms are and how they relate to

emotions. (B.1)
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In the following survey, you will be asked questions based on understanding and
recognizing emotions in text. Following the practice questions, there will be 16

survey questions in total.
The emotions will be described using emojis.

For example: &, &, @

Representational Alignment Instructions (same for all representations)

For each question below, you will be shown an emotion and a set of sentences.

Given the specified emotion, pick the sentence that is the best fit.

Note: In some cases, one or more of the choices might be identical. If you feel
that sentence is the best fit, feel free to pick any one. Also, the sentences are

not meant to be ironic or sarcastic.

Accuracy and Realism Instructions (same for all representations)

For the next set of questions, you will be given a sentence and an emotion

described in a word.
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We will ask you to rate the sentence based on how well it conveys the given
emotion, and how realistic it sounds (i.e. it sounds like something a person

would say). Please rate how well the sentence reflects each statement.

[Bonus Question — we used this as a filter to gauge how much attention users gave
to the survey. In a handful of cases, we removed answers to this question that seemed to

be written in extremely poor English or written by a language model.]

Think of a movie, television show, or book that you watched or read recently

that made you feel a strong emotion.

Please share the name of the movie, show, or book. Then tell us what that
emotion was in plain English, and why did you feel that way?

(Your response should be at least 30 characters long.)
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